Transcendental Functions

Objectives

- Know what Trigonometric Functions and its derivatives are.
- Know what Inverse Trigonometric Functions and its derivatives are.
- Know what Natural Logarithm Functions and its derivatives are.
- Know what Exponential Functions and its derivatives are.
- Know what Functions $\boldsymbol{a}^{\boldsymbol{u}}$ and $\boldsymbol{\operatorname { l o g }}_{\boldsymbol{a}}^{\boldsymbol{u}}$ and its derivatives are.

A) Trigonometric Functions

Circles of Radius r

- Theorem.

For an angle θ in standard position, let $P=(x, y)$ be the point on the terminal side of θ that is also on the circle $x^{2}+y^{2}=r^{2}$. Then
$\sin \theta=\frac{y}{r} \quad \csc \theta=\frac{r}{y}, y \neq 0 \quad \tan \theta=\frac{y}{x}, x \neq 0$
$\cos \theta=\frac{x}{r} \quad \sec \theta=\frac{r}{x}, x \neq 0 \quad \cot \theta=\frac{x}{y}, y \neq 0$

Exact Values for Quadrantal Angles

	Quadrantal Angles						
θ (Radians)	θ (Degrees)	$\sin \theta$	$\cos \theta$	$\tan \theta$	$\csc \theta$	$\sec \theta$	$\cot \theta$
0	0°	0	1	0	Not defined	1	Not defined
$\frac{\pi}{2}$	90°	1	0	Not defined	1	Not defined	0
π	180°	0	-1	0	Not defined	-1	Not defined
$\frac{3 \pi}{2}$	270°	-1	0	Not defined	-1	Not defined	0

Exact Values for Standard Angles

$\boldsymbol{\theta}$ (Radians)	$\boldsymbol{\theta}$ (Degrees)	$\boldsymbol{\operatorname { s i n } \theta}$	$\cos \theta$	$\tan \theta$	$\csc \theta$	$\sec \theta$	$\cot \theta$
$\frac{\pi}{6}$	30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2 \sqrt{3}}{3}$	$\sqrt{3}$
$\frac{\pi}{4}$	45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	$\sqrt{2}$	$\sqrt{2}$	1
$\frac{\pi}{3}$	60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{2 \sqrt{3}}{3}$	2	$\frac{\sqrt{3}}{3}$

Properties of the Trigonometric Functions

Domains of Trigonometric Functions

- Domain of sine and cosine functions is the set of all real numbers
- Domain of tangent and secant functions is the set of all real numbers, except odd integer multiples of $\frac{\pi}{2}=90^{\circ}$
- Domain of cotangent and cosecant functions is the set of all real numbers, except integer multiples of $\pi=180^{\circ}$

Ranges of Trigonometric Functions

- Sine and cosine have range $[-1,1]$
- $-1 \leq \sin \theta \leq 1 ;|\sin \theta| \leq 1$
- $-1 \leq \cos \theta \leq 1 ;|\cos \theta| \leq 1$
- Range of cosecant and secant is $(-\infty,-1] \cup[1, \infty)$
- $|\csc \theta| \geq 1$
- $|\sec \theta| \geq 1$
- Range of tangent and cotangent functions is the set of all real numbers

Periods of Trigonometric Functions

- Periodic Properties:

$$
\begin{gathered}
\sin (\theta+2 \pi)=\sin \theta \\
\cos (\theta+2 \pi)=\cos \theta \\
\tan (\theta+\pi)=\tan \theta \\
\csc (\theta+2 \pi)=\csc \theta \\
\sec (\theta+2 \pi)=\sec \theta \\
\cot (\theta+\pi)=\cot \theta
\end{gathered}
$$

- Sine, cosine, cosecant and secant have period 2π
- Tangent and cotangent have period π

Signs of the Trigonometric Functions

- $P=(x, y)$ corresponding to angle θ
- Definitions of functions, where defined

$$
\begin{aligned}
& \sin \theta=y \\
& \csc \theta=\frac{1}{y} \\
& \cos \theta=x
\end{aligned} \quad \tan \theta=\frac{\tan }{x} \begin{aligned}
& x \\
& \text { Find the signs of the functions }
\end{aligned}
$$

- Quadrant I: $x>0, y>0$
- Quadrant II: $x<0, y>0$
- Quadrant III: $x<0, y<0$
- Quadrant IV: $x>0, y<0$

Signs of the Trigonometric Functions

Quadrant of θ	$\sin \theta, \csc \theta$	$\cos \theta, \sec \theta$	$\tan \theta, \cot \theta$
I	Positive	Positive	Positive
II	Positive	Negative	Negative
III	Negative	Negative	Positive
IV	Negative	Positive	Negative

Pythagorean Identities

- Unit circle: $x^{2}+y^{2}=1$
- $(\sin \theta)^{2}+(\cos \theta)^{2}=1$

$$
\begin{gathered}
\sin ^{2} \theta+\cos ^{2} \theta=1 \\
\tan ^{2} \theta+1=\sec ^{2} \theta \\
1+\cot ^{2} \theta=\csc ^{2} \theta
\end{gathered}
$$

Even-Odd Properties

- A function f is even if $f(-\theta)=f(\theta)$ for all θ in the domain of f
- A function f is odd if $f(-\theta)=-f(\theta)$ for all θ in the domain of f

Even-Odd Properties

- Theorem. [Even-Odd Properties]

$$
\begin{gathered}
\sin (-\theta)=-\sin (\theta) \\
\cos (-\theta)=\cos (\theta)
\end{gathered}
$$

$$
\tan (-\theta)=-\tan (\theta)
$$

$$
\csc (-\theta)=-\csc (\theta)
$$

$$
\sec (-\theta)=\sec (\theta)
$$

$$
\cot (-\theta)=-\cot (\theta)
$$

- Cosine and secant are even functions
- The other functions are odd functions

Fundamental Trigonometric Identities

- Quotient Identities

$$
\tan \theta=\frac{\sin \theta}{\cos \theta} \quad \cot \theta=\frac{\cos \theta}{\sin \theta}
$$

- Reciprocal Identities
$\csc \theta=\frac{1}{\sin \theta} \quad \sec \theta=\frac{1}{\cos \theta} \quad \cot \theta=\frac{1}{\tan \theta}$
- Pythagorean Identities
$\sin ^{2} \theta+\cos ^{2} \theta=1 \quad \tan ^{2} \theta+1=\sec ^{2} \theta \quad 1+\cot ^{2} \theta=\csc ^{2} \theta$
- Even-Odd Identities
$\sin (-\theta)=-\sin \theta \quad \cos (-\theta)=\cos \theta \quad \tan (-\theta)=-\tan \theta$
$\csc (-\theta)=-\csc \theta \quad \sec (-\theta)=\sec \theta \quad \cot (-\theta)=-\cot \theta$

Graphs of the Sine and Cosine Functions

Graphing Trigonometric Functions

- Graph in $x y$-plane
- Write functions as
- $y=f(x)=\sin x$
- $y=f(x)=\cos x$
- $y=f(x)=\tan x$
- $y=f(x)=\csc x$
- $y=f(x)=\sec x$
- $y=f(x)=\cot x$
- Variable x is an angle, measured in radians
- Can be any real number

Graphing the Sine Function

- Periodicity: Only need to graph on interval $[0,2 \pi]$ (One cycle)
- Plot points and graph

x	$y=\sin x$	(x, y)
0	0	$(0,0)$
$\frac{\pi}{6}$	$\frac{1}{2}$	$\left(\frac{\pi}{6}, \frac{1}{2}\right)$
$\frac{\pi}{2}$	1	$\left(\frac{\pi}{2}, 1\right)$
$\frac{5 \pi}{6}$	$\frac{1}{2}$	$\left(\frac{5 \pi}{6}, \frac{1}{2}\right)$
π	0	$(\pi, 0)$
$\frac{7 \pi}{6}$	$-\frac{1}{2}$	$\left(\frac{7 \pi}{6},-\frac{1}{2}\right)$
$\frac{3 \pi}{2}$	-1	$\left(\frac{3 \pi}{2},-1\right)$
$\frac{11 \pi}{6}$	$-\frac{1}{2}$	$\left(\frac{11 \pi}{6},-\frac{1}{2}\right)$
2π	0	$(2 \pi, 0)$

Properties of the Sine Function

- Domain: All real numbers
- Range: $[-1,1]$
- Odd function
- Periodic, period 2π
- x-intercepts: $\ldots,-2 \pi,-\pi, 0, \pi, 2 \pi, 3 \pi, \ldots$
- y-intercept: 0
- Maximum value: $y=1$, occurring at

$$
x=\ldots,-\frac{3 \pi}{2}, \frac{\pi}{2}, \frac{5 \pi}{2}, \frac{9 \pi}{2}, \ldots
$$

- Minimum value: $y=-1$, occurring at

$$
x=\ldots,-\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{7 \pi}{2}, \frac{11 \pi}{2}, \ldots
$$

Transformations of the Graph of the Sine Functions

- Example.

Problem: Use the graph of $y=\sin x$ to graph $y=-4 \sin \left(x+\frac{\pi}{4}\right)$

Answer:

Graphing the Cosine Function

- Periodicity: Again, only need to graph on interval $[0,2 \pi]$ (One cycle)
- Plot points and graph

x	$y=\cos x$	(x, y)
0	1	$(0,1)$
$\frac{\pi}{3}$	$\frac{1}{2}$	$\left(\frac{\pi}{3}, \frac{1}{2}\right)$
$\frac{\pi}{2}$	0	$\left(\frac{\pi}{2}, 0\right)$
$\frac{2 \pi}{3}$	$-\frac{1}{2}$	$\left(\frac{2 \pi}{3},-\frac{1}{2}\right)$
π	-1	$(\pi,-1)$
$\frac{4 \pi}{3}$	$-\frac{1}{2}$	$\left(\frac{4 \pi}{3},-\frac{1}{2}\right)$
$\frac{3 \pi}{2}$	0	$\left(\frac{3 \pi}{2}, 0\right)$
$\frac{5 \pi}{3}$	$\frac{1}{2}$	$\left(\frac{5 \pi}{3}, \frac{1}{2}\right)$
2π	1	$(2 \pi, 1)$

Properties of the Cosine Function

- Domain: All real numbers
- Range: $[-1,1]$
- Even function
- Periodic, period 2π
- x-intercepts: $\ldots,-\frac{3 \pi}{2},-\frac{\pi}{2}, \frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2} \ldots$
- y-intercept: 1
- Maximum value: $y=1$, occurring at

$$
x=\ldots,-2 \pi, 0,2 \pi, 4 \pi, 6 \pi, \ldots
$$

- Minimum value: $y=-1$, occurring at

$$
x=\ldots,-\pi, \pi, 3 \pi, 5 \pi, \ldots
$$

Amplitude and Period of Sinusoidal Functions

- Cycle: One period of $y=\sin (\omega x)$ or

$$
y=\cos (\omega x)
$$

Amplitude and Period of Sinusoidal Functions

- Theorem. If $\omega>0$, the amplitude and period of $y=A \sin (\omega x)$ and $y=A \cos (\omega x)$ are given by

Amplitude $=|A|$
Period $=T=\frac{2 \pi}{\omega}$.

Amplitude and Period of Sinusoidal Functions

- Example.

Problem: Determine the amplitude and period of $y=-2 \cos (\pi x)$
Answer:

Graphing Sinusoidal Functions

- One cycle contains four important subintervals
- For $y=\sin x$ and $y=\cos x$ these are

$$
\left[0, \frac{\pi}{2}\right],\left[\frac{\pi}{2}, \pi\right],\left[\pi, \frac{3 \pi}{2}\right],\left[\frac{3 \pi}{2}, 2 \pi\right]
$$

- Gives five key points on graph

Graphs of the
 Tangent, Cotangent, Cosecant and Secant Functions

Graphing the Tangent Function

- Periodicity: Only need to graph on interval $[0, \pi]$
- Plot points and graph
x
$-\frac{\pi}{\frac{\pi}{4}}$
$-\frac{\pi}{4}$
$-\frac{\pi}{6}$
$\frac{0}{6}$
$\frac{\pi}{6}$
$\frac{\pi}{3}$
$\frac{\pi}{3}$

$y=\tan x$	(x, y)
$-\sqrt{3} \approx-1.73$	$\left(-\frac{\pi}{3},-\sqrt{3}\right)$
-1	$\left(-\frac{\pi}{4},-1\right)$
$-\frac{\sqrt{3}}{3} \approx-0.58$	$\left(-\frac{\pi}{6},-\frac{\sqrt{3}}{3}\right)$
0	$(0,0)$
$\frac{\sqrt{3}}{3} \approx 0.58$	$\left(\frac{\pi}{6}, \frac{\sqrt{3}}{3}\right)$
1	$\left(\frac{\pi}{4}, 1\right)$
$\sqrt{3} \approx 1.73$	$\left(\frac{\pi}{3}, \sqrt{3}\right)$

Properties of the Tangent Function

- Domain: All real numbers, except odd multiples of $\frac{\pi}{2}$
- Range: All real numbers
- Odd function
- Periodic, period π
- x-intercepts: $. . .,-2 \pi,-\pi, 0, \pi, 2 \pi, 3 \pi, \ldots$
- y-intercept: 0
- Asymptotes occur at $x=\ldots,-\frac{3 \pi}{2},-\frac{\pi}{2}, \frac{\pi}{2}, \frac{3 \pi}{2}, \ldots$

Transformations of the Graph of the Tangent Functions

- Example.

Problem: Use the graph of $y=\tan x$ to graph $y=-2 \tan \left(\frac{x}{3}\right)$ Answer:

Graphing the Cotangent Function

- Periodicity: Only need to graph on interval [0, π]

x	$y=\cot x$	(x, y)
$\frac{\pi}{6}$	$\sqrt{3}$	$\left(\frac{\pi}{6}, \sqrt{3}\right)$
$\frac{\pi}{4}$	1	$\left(\frac{\pi}{4}, 1\right)$
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{3}$	$\left(\frac{\pi}{3}, \frac{\sqrt{3}}{3}\right)$
$\frac{\pi}{2}$	0	$\left(\frac{\pi}{2}, 0\right)$
$\frac{2 \pi}{3}$	$-\frac{\sqrt{3}}{3}$	$\left(\frac{2 \pi}{3},-\frac{\sqrt{3}}{3}\right)$
$\frac{3 \pi}{4}$	-1	$\left(\frac{3 \pi}{4},-1\right)$
$\frac{5 \pi}{6}$	$-\sqrt{3}$	$\left(\frac{5 \pi}{6},-\sqrt{3}\right)$

Graphing the Cosecant and Secant Functions

- Use reciprocal identities
- Graph of $y=\csc x$

Graphing the Cosecant and Secant Functions

- Use reciprocal identities
- Graph of $y=\sec x$

Transformations of the Graph of the Trigonometric Functions

If A, C, B \& ω Are real numbers,$\omega>0$, $\boldsymbol{y}=\boldsymbol{A} \sin (\omega \boldsymbol{x}+\boldsymbol{C})+\mathrm{B}, .$. Than,

- The range of function is $\mp A$.
- If $\mathrm{A}<1$ than, the function will reflect.
- The period $T=\frac{2 \pi}{\omega}$ for ($\sin , \cos , \sec \& \csc$).
- The period $\boldsymbol{T}=\frac{\pi}{\omega}$ for $(\tan \& \cot)$.
- If $\omega>1$ than, the period will shrink horizontally.
- If $0<\omega<1$ than, the period will stretch horizontally.
- The start of period $\boldsymbol{x}_{\text {start }}=\frac{-C}{\omega}$.
- If $C>0$, the period will move rightward.
- If $C>0$, the period will move leftward.
- The end of period $x_{\text {end }}=x_{\text {start }}+T$.
- If $\mathrm{B}>0$, the function will move upward.
- If $\mathrm{B}<0$, the function will move downward.

Examples:

Derivatives of

Trigonometric Functions

When we talk about the function f defined for all real numbers x by $f(x)=\sin x$, it is understood that $\sin x$ means the sine of the angle whose radian measure is x.
A similar convention holds for the other trigonometric functions cos, tan, csc, sec, and cot

$$
f(x)=\sin x
$$

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin x}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin x \cos h+\cos x \sin h-\sin x}{h} \\
& =\lim _{h \rightarrow 0}\left[\frac{\sin x \cos h-\sin x}{h}+\frac{\cos x \sin h}{h}\right] \\
& =\lim _{h \rightarrow 0}\left[\sin x\left(\frac{\cos h-1}{h}\right)+\cos x\left(\frac{\sin h}{h}\right)\right] \\
& =\lim _{h \rightarrow 0} \sin x \cdot \lim _{h \rightarrow 0} \frac{\cos h-1}{h}+\lim _{h \rightarrow 0} \cos x \cdot \lim _{h \rightarrow 0} \frac{\sin h}{h} \\
& =\sin x \lim _{h \rightarrow 0} \frac{\cos h-1}{h}+\cos x \lim _{h \rightarrow 0} \frac{\sin h}{h}
\end{aligned}
$$

$$
\lim _{h \rightarrow 0} \frac{\sin h}{h}=\text { ? }
$$

For first quadrant all, $\sin \theta, \theta$, and $\tan \theta$ are positive so we can write

$$
\sin \theta<\theta<\tan \theta
$$

Take the inverse $1>\frac{\sin \theta}{\theta}>\cos \theta$

$$
\lim _{\theta \rightarrow 0^{+}} 1=1 \quad \& \quad \lim _{\theta \rightarrow 0^{+}} \cos \theta=1
$$

By the Squeeze Theorem, we have: $\lim _{\theta \rightarrow 0^{+}} \frac{\sin \theta}{\theta}=1$
However, the function $(\sin \theta) / \theta$ is an even function.
So, its right and left limits must be equal. Hence, we have:

$$
\lim _{h \rightarrow 0} \frac{\sin h}{h}=\mathbf{1}
$$

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{\cos h-1}{h}=? \\
& \lim _{\theta \rightarrow 0} \frac{\cos \theta-1}{\theta} \\
& =\lim _{\theta \rightarrow 0}\left(\frac{\cos \theta-1}{\theta} \cdot \frac{\cos \theta+1}{\cos \theta+1}\right) \\
& =\lim _{\theta \rightarrow 0} \frac{\cos ^{2} \theta-1}{\theta\left(\cos ^{\theta}+1\right)}=\lim _{\theta \rightarrow 0} \frac{-\sin ^{2} \theta}{\theta(\cos \theta+1)} \\
& =-\lim _{\theta \rightarrow 0}\left(\frac{\sin \theta}{\theta} \cdot \frac{\sin \theta}{\cos \theta+1}\right) \\
& =-\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta} \cdot \lim _{\theta \rightarrow 0} \frac{\sin \theta}{\cos \theta+1}=-1 \cdot\left(\frac{0}{1+1}\right)=0 \\
& \lim _{h \rightarrow 0} \frac{\cos h-1}{h}=0
\end{aligned}
$$

$$
\begin{aligned}
f^{\prime}(x) & =\sin x \cdot \lim _{h \rightarrow 0} \frac{\cos h-1}{h}+\cos x \cdot \lim _{h \rightarrow 0} \frac{\sin h}{h} \\
& =(\sin x) \cdot 0+(\cos x) \cdot 1 \\
& =\cos x \\
\frac{d}{d x} & (\sin x)=\cos x
\end{aligned}
$$

Using the same methods as in the case of finding derivative of $\sin x$, we can prove:

$$
\frac{d}{d x}(\cos x)=-\sin x
$$

The tangent function can also be differentiated by using the definition of a derivative.
However, it is easier to use the Quotient Rule together with formulas for derivatives of $\sin x \& \cos x$ as follows.

$$
\begin{aligned}
\frac{d}{d x}(\tan x) & =\frac{d}{d x}\left(\frac{\sin x}{\cos x}\right) \\
& =\frac{\cos x \frac{d}{d x}(\sin x)-\sin x \frac{d}{d x}(\cos x)}{\cos ^{2} x} \\
& =\frac{\cos x \cdot \cos x-\sin x(-\sin x)}{\cos ^{2} x} \\
& =\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x}=\frac{1}{\cos ^{2} x}=\sec ^{2} x
\end{aligned}
$$

The derivatives of the remaining trigonometric functions - csc, sec, and cot - can also be found easily using the Quotient Rule.

All together:
$\frac{d}{d x}(\sin x)=\cos x$
$\frac{d}{d x}(\csc x)=-\csc x \cot x$
$\frac{d}{d x}(\cos x)=-\sin x$
$\frac{d}{d x}(\tan x)=\sec ^{2} x$
$\frac{d}{d x}(\sec x)=\sec x \tan x$
$d x$
$\frac{d}{d x}(\cot x)=-\csc ^{2} x$

Example:

Differentiate $f(x)=\frac{\sec x}{1+\tan x}$
For what values of x does the graph of f have a horizontal tangent?

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(1+\tan x) \frac{d}{d x}(\sec x)-\sec x \frac{d}{d x}(1+\tan x)}{(1+\tan x)^{2}} \\
& =\frac{(1+\tan x) \sec x \tan x-\sec x \cdot \sec ^{2} x}{(1+\tan x)^{2}} \\
& =\frac{\sec x\left(\tan x+\tan ^{2} x-\sec ^{2} x\right)}{(1+\tan x)^{2}}
\end{aligned}
$$

$$
=\frac{\sec x(\tan x-1)}{(1+\tan x)^{2}}
$$

$$
\begin{aligned}
\tan ^{2} x-\sec ^{2} x & =\frac{\sin ^{2} x}{\cos ^{2} x}-\frac{1}{\cos ^{2} x} \\
& =-\frac{\cos ^{2} x}{\cos ^{2} x}=-1
\end{aligned}
$$

B) Inverse Trigonometric functions

Arcsine
Arccosine

Lets review inverse functions

Find the inverse of $f(x)=3 x+6$
$\mathrm{y}=3 \mathrm{x}+6$
Inverse functions switch domain and range.

$$
x=3 y+6 \quad(\text { solve for } y) \quad \text { So, }
$$

$$
\begin{gathered}
x-6=3 y \\
1 / 3 x-2=y \\
f^{-1}(x)=1 / 3 x-2
\end{gathered}
$$

What is the domain and range of the Sine function

Domain: All real numbers

Range: - 1 to 1
$\boldsymbol{\operatorname { s i n }} \mathrm{x}$

What is the domain and range of the Inverse of the Sine function

The inverse's Domain would be -1 to 1 ; Yet the Range is not all real numbers. Range

$$
\frac{-\pi}{2} \leq y \leq \frac{\pi}{2}
$$

Inverse of the Cosine

Domain: [-1,1]
Range: $\quad[\pi, 0]$

The Tangent function

Domain: All real numbers except
$$
\frac{\pi}{2}+n \pi
$$
Where n is a integer

Range: All real numbers

Inverse of Tangent function

Domain: All real numbers
Range:

$$
\frac{-\pi}{2}<y<\frac{\pi}{2}
$$

Definition of Arcsine

The arc sine is the inverse function of the sine. What is the angle that has a sine equal to a given number

$$
\begin{gathered}
\frac{\sqrt{2}}{2} \\
\arcsin \frac{\sqrt{2}}{2}=\frac{\pi}{4} \\
\sin \frac{\pi}{4}=\frac{\sqrt{2}}{2}
\end{gathered}
$$

Examples

Find the exact value.
For these problems
All answers are in the First Quadrant.

$$
\begin{aligned}
& \arccos \frac{\sqrt{3}}{2}=\frac{\pi}{6} \\
& \arcsin \frac{1}{2}=\frac{\pi}{6} \\
& \arctan 1=\frac{\pi}{4}
\end{aligned}
$$

Examples

Be careful to make sure it is in the Range
$\arcsin \left(\sin \frac{\pi}{3}\right)=\frac{\pi}{3}$
$\arccos \left(\cos \frac{7 \pi}{6}\right)=\frac{5 \pi}{6}$

Solve using a triangle

$\operatorname{Cot}(\arctan \mathrm{x})$
Let $\arctan \mathrm{x}=\mathrm{u} \quad \sqrt{x^{2}+1}$
x

Cot $u=$
1

$$
\frac{1}{x}
$$

Solve $\csc \left(\arctan \frac{x}{\sqrt{2}}\right)$

Let

$$
u=\arctan \frac{x}{\sqrt{2}}, \text { thenK } \tan u=\frac{x}{\sqrt{2}}
$$

Solve

$$
\csc \left(\arctan \frac{x}{\sqrt{2}}\right)
$$

So

$$
\csc u=\frac{1}{\sin u}
$$

$$
\sin u=\frac{x}{\sqrt{x^{2}+2}}
$$

$\csc u=\frac{1}{\frac{x}{\sqrt{x^{2}+2}}}$
$\sqrt{2}$
$\csc u=\frac{\sqrt{x^{2}+2}}{x}$

Show that $\arcsin \frac{\sqrt{36-x^{2}}}{6}=\arccos \frac{x}{6}$
Using arccos

$$
x^{2}+?^{2}=6^{2}
$$

$$
?^{2}=36-x^{2}
$$

$$
?=\sqrt{36-x^{2}}
$$

$\sin u=\frac{\sqrt{36-x^{2}}}{6}$
$\cos u=\frac{x}{6}$

Derivatives of Inverse Trigonometric Functions

The next theorem lists the derivatives of the six inverse trigonometric functions. Note that the derivatives of $\arccos u$, $\operatorname{arccot} u$, and $\operatorname{arccsc} u$ are the negatives of the derivatives of $\arcsin u$, arctan u, and $\operatorname{arcsec} u$, respectively.

THEOREM 5.16 Derivatives of Inverse Trigonometric Functions

 Let u be a differentiable function of x.$$
\begin{aligned}
& \frac{d}{d x}[\arcsin u]=\frac{u^{\prime}}{\sqrt{1-u^{2}}} \\
& \frac{d}{d x}[\arccos u]=\frac{-u^{\prime}}{\sqrt{1-u^{2}}} \\
& \frac{d}{d x}[\arctan u]=\frac{u^{\prime}}{1+u^{2}} \\
& \frac{d}{d x}[\operatorname{arccot} u]=\frac{-u^{\prime}}{1+u^{2}} \\
& \frac{d}{d x}[\operatorname{arcsec} u]=\frac{u^{\prime}}{|u| \sqrt{u^{2}-1}} \\
& \frac{d}{d x}[\operatorname{arccsc} u]=\frac{-u^{\prime}}{|u| \sqrt{u^{2}-1}}
\end{aligned}
$$

Example:

Differentiating Inverse Trigonometric Functions

a. $\frac{d}{d x}[\arcsin (2 x)]=\frac{2}{\sqrt{1-(2 x)^{2}}}=\frac{2}{\sqrt{1-4 x^{2}}}$
b. $\frac{d}{d x}[\arctan (3 x)]=\frac{3}{1+(3 x)^{2}}=\frac{3}{1+9 x^{2}}$
c. $\frac{d}{d x}[\arcsin \sqrt{x}]=\frac{(1 / 2) x^{-1 / 2}}{\sqrt{1-x}}=\frac{1}{2 \sqrt{x} \sqrt{1-x}}=\frac{1}{2 \sqrt{x-x^{2}}}$
d. $\frac{d}{d x}\left[\operatorname{arcsec} e^{2 x}\right]=\frac{2 e^{2 x}}{e^{2 x} \sqrt{\left(e^{2 x}\right)^{2}-1}}=\frac{2 e^{2 x}}{e^{2 x} \sqrt{e^{4 x}-1}}=\frac{2}{\sqrt{e^{4 x}-1}}$

The absolute value sign is not necessary because $e^{2 x}>0$.

C) Exponential Functions

Exponential Function

- The function defined by

$$
f(x)=b^{x} \quad(b>0, b \neq 1)
$$

is called an exponential function with base b and exponent x.

- The domain of f is the set of all real numbers.

Example

- The exponential function with base 2 is the function

$$
f(x)=2^{x}
$$

with domain $(-\infty, \infty)$.

- The values of $f(x)$ for selected values of x follow:

$$
\begin{aligned}
& f(3)=2^{3}=8 \\
& f\left(\frac{3}{2}\right)=2^{3 / 2}=2 \cdot 2^{1 / 2}=2 \sqrt{2} \\
& f(0)=2^{0}=1
\end{aligned}
$$

Example

- The exponential function with base 2 is the function

$$
f(x)=2^{x}
$$

with domain $(-\infty, \infty)$.

- The values of $f(x)$ for selected values of x follow:

$$
\begin{aligned}
& f(-1)=2^{-1}=\frac{1}{2} \\
& f\left(-\frac{2}{3}\right)=2^{-2 / 3}=\frac{1}{2^{2 / 3}}=\frac{1}{\sqrt[3]{4}}
\end{aligned}
$$

Laws of Exponents

- Let a and b be positive numbers and let x and y be real numbers. Then,

1. $b^{x} \cdot b^{y}=b^{x+y}$
2. $\frac{b^{x}}{b^{y}}=b^{x-y}$
3. $\left(b^{x}\right)^{y}=b^{x y}$
4.

$$
(a b)^{x}=a^{x} b^{x}
$$

5.

$$
\left(\frac{a}{b}\right)^{x}=\frac{a^{x}}{b^{x}}
$$

Examples

- Let $f(x)=2^{2 x-1}$. Find the value of x for which $f(x)=16$.
Solution
- We want to solve the equation

$$
2^{2 x-1}=16=2^{4}
$$

- But this equation holds if and only if

$$
2 x-1=4
$$

giving $x=\frac{5}{2}$.

Examples

- Sketch the graph of the exponential function $f(x)$ $=2^{x}$.

Solution

- First, recall that the domain of this function is the set of real numbers.
- Next, putting $x=0$ gives $y=2^{0}=1$, which is the y-intercept.
(There is no x-intercept, since there is no value of x for \quad which $y=0$)

Examples

- Sketch the graph of the exponential function $f(x)=2^{x}$. Solution
- Now, consider a few values for x.

x	-5	-4	-3	-2	-1	0	1	2	3	4	5
y	$1 / 32$	$1 / 16$	$1 / 8$	$1 / 4$	$1 / 2$	1	2	4	8	16	32

- Note that 2^{x} approaches zero as x decreases without bound:
- There is a horizontal asymptote at $y=0$.
- Furthermore, 2^{x} increases without bound when x increases without bound.
- Thus, the range of f is the interval $(0, \infty)$.

Examples

- Sketch the graph of the exponential function $f(x)=2^{x}$.

Solution

- Finally, sketch the graph:

Examples

- Sketch the graph of the exponential function $f(x)=(1 / 2)^{x}$.
Solution
- First, recall again that the domain of this function is the set of real numbers.
- Next, putting $x=0$ gives $y=(1 / 2)^{0}=1$, which is the y-intercept.
(There is no x-intercept, since there is no value of x for which $y=0$)

Examples

- Sketch the graph of the exponential function $f(x)$ $=(1 / 2)^{x}$.

Solution

- Now, consider a few values for x.

x	-5	-4	-3	-2	-1	0	1	2	3	4	5
y	32	16	8	4	2	1	$1 / 2$	$1 / 4$	$1 / 8$	$1 / 16$	$1 / 32$

- Note that $(1 / 2)^{x}$ increases without bound when x decreases without bound.
- Furthermore, $(1 / 2)^{x}$ approaches zero as x increases without bound: there is a horizontal asymptote at y $=0$.
- As before, the range of f is the interval $(0, \infty)$.

Examples

- Sketch the graph of the exponential function $f(x)=$ $(1 / 2)^{x}$.

Solution

- Finally, sketch the graph:

Examples

- Sketch the graph of the exponential function $f(x)$ $=(1 / 2)^{x}$.

Solution

- Note the symmetry between the two functions:

Properties of Exponential Functions

The exponential function $y=b^{x}(b>0, b \neq 1)$
has the following properties:

1. Its domain is $(-\infty, \infty)$.
2. Its range is $(0, \infty)$.
3. Its graph passes through the point $(0,1)$
4. It is continuous on $(-\infty, \infty)$.
5. It is increasing on $(-\infty, \infty)$ if $b>1$ and decreasing on $(-\infty, \infty)$ if $b<1$.

The Base e

- Exponential functions to the base e, where e is an irrational number whose value is $2.7182818 \ldots$, play an important role in both theoretical and applied problems.
- It can be shown that

$$
e=\lim _{m \rightarrow \infty}\left(1+\frac{1}{m}\right)^{m}
$$

Examples

- Sketch the graph of the exponential function $f(x)$ $=e^{x}$.
Solution
- Since $e^{x}>0$ it follows that the graph of $y=e^{x}$ is similar to the graph of $y=2^{x}$.
- Consider a few values for x.

x	-3	-2	-1	0	1	2	3
y	0.05	0.14	0.37	1	2.72	7.39	20.09

Examples

- Sketch the graph of the exponential function $f(x)=$ e^{x}.

Solution

- Sketching the graph:

Examples

- Sketch the graph of the exponential function $f(x)$ $=e^{-x}$.

Solution

- Since $e^{-x}>0$ it follows that $0<1 / e<1$ and so

$$
f(x)=e^{-x}=1 / e^{x}=(1 / e)^{x} \text { is an exponential }
$$ function with base less than 1.

- Therefore, it has a graph similar to that of $y=$ $(1 / 2)^{x}$.
- Consider a few values for x.

x	-3	-2	-1	0	1	2	3
y	20.09	7.39	2.72	1	0.37	0.14	0.05

Examples

- Sketch the graph of the exponential function $f(x)=$ e^{-x}.

Solution

- Sketching the graph:

D) Logarithmic Functions

Logarithms

- We've discussed exponential equations of the form

$$
y=b^{x} \quad(b>0, b \neq 1)
$$

- But what about solving the same equation for y ?
- You may recall that y is called the logarithm of x to the base b, and is denoted $\log _{b} x$.
- Logarithm of x to the base b

$$
y=\log _{b^{x}} \quad \text { if and only if } x=b^{y} \quad(x>0)
$$

Examples

- Solve $\log _{3} x=4$ for x :

Solution

- By definition, $\log _{3} x=4$ implies $x=3^{4}=81$.
- Solve $\log _{16} 4=x$ for x.

Solution

- $\log _{16} 4=x$ is equivalent to $4=16^{x}=\left(4^{2}\right)^{x}=4^{2 x}$, or $4^{1}=4^{2 x}$,
from which we deduce that

Examples

- Solve $\log _{16} 4=x$ for x :

Solution

- $\log _{16} 4=x$ is equivalent to $4=16^{x}=\left(4^{2}\right)^{x}=4^{2 x}$, or $4^{1}=4^{2 x}$,
from which we deduce that

$$
\begin{aligned}
2 x & =1 \\
x & =\frac{1}{2}
\end{aligned}
$$

Examples

- Solve $\log _{x} 8=3$ for x.

Solution

- By definition, we see that $\log _{x} 8=3$ is equivalent to

$$
\begin{aligned}
& 8=2^{3}=x^{3} \\
& x=2
\end{aligned}
$$

Logarithmic Notation

$$
\begin{aligned}
\log x & =\log _{10} x \\
\ln x & =\log _{e} x
\end{aligned}
$$

Common logarithm
Natural logarithm

Laws of Logarithms

- If m and n are positive numbers, then

1.
2.
3.

$$
\log _{b} m n=\log _{b} m+\log _{b} n
$$

2.

$$
\log _{b} \frac{m}{n}=\log _{b} m-\log _{b} n
$$

$$
\log _{b} m^{n}=n \log _{b} m
$$

4.

$$
\log _{b} 1=0
$$

5.

$$
\log _{b} b=1
$$

Examples

- Given that $\log 2 \approx 0.3010, \log 3 \approx 0.4771$, and $\log 5 \approx 0.6990$, use the laws of logarithms to find

$$
\begin{aligned}
\log 15 & =\log 3 \cdot 5 \\
& =\log 3+\log 5 \\
& \approx 0.4771+0.6990 \\
& =1.1761
\end{aligned}
$$

Examples

- Given that $\log 2 \approx 0.3010, \log 3 \approx 0.4771$, and $\log 5 \approx 0.6990$, use the laws of logarithms to find

$$
\begin{aligned}
\log 7.5 & =\log (15 / 2) \\
& =\log (3 \cdot 5 / 2) \\
& =\log 3+\log 5-\log 2 \\
& \approx 0.4771+0.6990-0.3010 \\
& =0.8751
\end{aligned}
$$

Examples

Given that $\log 2 \approx 0.3010, \log 3 \approx 0.4771$, and $\log 5 \approx 0.6990$, use the laws of logarithms to find

$$
\begin{aligned}
\log 81 & =\log 3^{4} \\
& =4 \log 3 \\
& \approx 4(0.4771) \\
& =1.9084
\end{aligned}
$$

Examples

- Given that $\log 2 \approx 0.3010, \log 3 \approx 0.4771$, and $\log 5 \approx 0.6990$, use the laws of logarithms to find

$$
\begin{aligned}
\log 50 & =\log 5 \cdot 10 \\
& =\log 5+\log 10 \\
& \approx 0.6990+1 \\
& =1.6990
\end{aligned}
$$

Examples

Expand and simplify the expression:

$$
\begin{aligned}
\log _{3} x^{2} y^{3} & =\log _{3} x^{2}+\log _{3} y^{3} \\
& =2 \log _{3} x+3 \log _{3} y
\end{aligned}
$$

Examples

- Expand and simplify the expression:

$$
\begin{aligned}
\log _{2} \frac{x^{2}+1}{2^{x}} & =\log _{2}\left(x^{2}+1\right)-\log _{2} 2^{x} \\
& =\log _{2}\left(x^{2}+1\right)-x \log _{2} 2 \\
& =\log _{2}\left(x^{2}+1\right)-x
\end{aligned}
$$

Examples

- Expand and simplify the expression:

$$
\begin{aligned}
\ln \frac{x^{2} \sqrt{x^{2}-1}}{e^{x}} & =\ln \frac{x^{2}\left(x^{2}-1\right)^{1 / 2}}{e^{x}} \\
& =\ln x^{2}+\ln \left(x^{2}-1\right)^{1 / 2}-\ln e^{x} \\
& =2 \ln x+\frac{1}{2} \ln \left(x^{2}-1\right)-x \ln e \\
& =2 \ln x+\frac{1}{2} \ln \left(x^{2}-1\right)-x
\end{aligned}
$$

Examples

Use the properties of logarithms to solve the equation for x :

$$
\begin{align*}
\log _{3}(x+1)-\log _{3}(x-1) & =1 \\
\log _{3} \frac{x+1}{x-1} & =1 \tag{Law 2}\\
\frac{x+1}{x-1} & =3^{1}=3 \\
x+1 & =3(x-1) \\
x+1 & =3 x-3 \\
4 & =2 x \\
x & =2
\end{align*}
$$

Definition of logarithms

Examples

Use the properties of logarithms to solve the equation for x.

$$
\begin{aligned}
& \log x+\log (2 x-1)=\log 6 \\
& \log x+\log (2 x-1)-\log 6=0 \\
& \log \frac{x(2 x-1)}{6}=0 \\
& \frac{x(2 x-1)}{6}=10^{0}=1 \\
& x(2 x-1)=6 \\
& 2 x^{2}-x-6=0 \\
& (2 x+3)(x-2)=0 \\
& x=2 \\
& \text { Laws } 1 \text { and } 2 \\
& \text { Definition of } \\
& \text { logarithms } \\
& x=-\frac{3}{2} \text { is out of } \\
& \text { the domain of } \log x \text {, } \\
& \text { so it is discarded. }
\end{aligned}
$$

Logarithmic Function

- The function defined by

$$
f(x)=\log _{b} x \quad(b>0, b \neq 1)
$$

is called the logarithmic function with base b.

- The domain of f is the set of all positive numbers.

Properties of Logarithmic Functions

The logarithmic function

$$
y=\log _{b} x \quad(b>0, b \neq 1)
$$

has the following properties:

1. Its domain is $(0, \infty)$.
2. Its range is $(-\infty, \infty)$.
3. Its graph passes through the point $(1,0)$.
4. It is continuous on $(0, \infty)$.
5. It is increasing on $(0, \infty)$ if $b>1$ and decreasing on $(0, \infty)$ if $\mathrm{b} ; 1$.

Example

- Sketch the graph of the function $y=\ln x$. Solution
- We first sketch the graph of $y=e^{x}$.

The required graph is the mirror image of the graph of $y=e^{x}$ with respect to the line $y=x$:

Properties Relating
 Exponential and Logarithmic Functions

- Properties relating e^{x} and $\ln x$.

$$
\begin{aligned}
e^{\ln x} & =x & & (x>0) \\
\ln e^{x} & =x & & (\text { for any real number } x)
\end{aligned}
$$

Examples

- Solve the equation $2 e^{x+2}=5$.

Solution

- Divide both sides of the equation by 2 to obtain:

$$
e^{x+2}=\frac{5}{2}=2.5
$$

- Take the natural logarithm of each side of the equation and solve:

$$
\begin{aligned}
\ln e^{x+2} & =\ln 2.5 \\
(x+2) \ln e & =\ln 2.5 \\
x+2 & =\ln 2.5 \\
x & =-2+\ln 2.5 \\
x & \approx-1.08
\end{aligned}
$$

Examples

- Solve the equation $5 \ln x+3=0$.

Solution

- Add -3 to both sides of the equation and then divide both sides of the equation by 5 to obtain:

$$
\begin{aligned}
5 \ln x & =-3 \\
\ln x & =-\frac{3}{5}=-0.6
\end{aligned}
$$

and so:

$$
\begin{aligned}
e^{\ln x} & =e^{-0.6} \\
x & =e^{-0.6} \\
x & \approx 0.55
\end{aligned}
$$

Derivative of Exponential and Logarithmic Functions

1- Derivative of exponential function $f(x)=e^{x}$

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{x}=\lim _{h \rightarrow 0} \frac{e^{x+h}-e^{x}}{h}=\lim _{h \rightarrow 0} \frac{e^{x} e^{h}-e^{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{e^{x}\left(e^{h}-1\right)}{h}=e^{x} \lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=e^{x} f^{\prime}(0)
\end{aligned}
$$

By definition, this is derivative $f^{\prime}(0)$, what is the slope of e^{x} at $x=1$.

example:
Differentiate the function $\quad y=e^{\tan x}$
To use the Chain Rule, we let $u=\tan x$.
Then, we have $y=e^{u}$.

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}=e^{u} \frac{d u}{d x}=e^{\tan x} \sec ^{2} x
$$

example:
Find y^{\prime} if $y=e^{-4 x} \sin 5 x$.

$$
\begin{aligned}
y^{\prime} & =e^{-4 x}(\cos 5 x)(5)+(\sin 5 x) e^{-4 x}(-4) \\
& =e^{-4 x}(5 \cos 5 x-4 \sin 5 x)
\end{aligned}
$$

chain rule:

$$
\frac{d}{d x} e^{u}=e^{u} \frac{d u}{d x}
$$

We can now use this formula to find the derivative of a^{x}

$$
\begin{aligned}
& y=a^{x} \quad \Longrightarrow \quad \ln y=\ln a^{x}=x \ln a \quad \Rightarrow a^{x}=e^{x \ln a} \\
& \frac{d}{d x} a^{x}=\frac{d}{d x}\left(e^{x \ln a}\right)=e^{x \ln a} \frac{d}{d x}(x \ln a)=e^{x \ln a} \cdot \ln a \\
& \frac{d}{d x} a^{x}=a^{x} \cdot \ln a
\end{aligned}
$$

2- Derivative of Natural Logarithm Function

$$
\begin{aligned}
& y=\ln x \\
& e^{y}=x \Rightarrow \frac{d}{d x} e^{y}=\frac{d}{d x} x \Rightarrow \\
& e^{y} \frac{d y}{d x}=1 \Rightarrow x \frac{d y}{d x}=1 \Rightarrow \frac{d y}{d x}=\frac{1}{x} \\
& \frac{d}{d x}(\ln x)=\frac{1}{x}
\end{aligned}
$$

example:
Differentiate $y=\ln \left(x^{3}+1\right)$.

To use the Chain Rule, we let $u=x^{3}+1$.
Then, $y=\ln u$.
$\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}=\frac{1}{u} \frac{d u}{d x}=\frac{1}{x^{3}+1}\left(3 x^{2}\right)=\frac{3 x^{2}}{x^{3}+1}$
example:
Find: $\frac{d}{d x} \ln (\sin x)$
$\frac{d}{d x} \ln (\sin x)=\frac{1}{\sin x} \frac{d}{d x}(\sin x)=\frac{1}{\sin x} \cos x=\cot x$
example: Differentiate $f(x)=\sqrt{\ln x}$

$$
f^{\prime}(x)=\frac{1}{2}(\ln x)^{-1 / 2} \frac{d}{d x}(\ln x)=\frac{1}{2 \sqrt{\ln x}} \cdot \frac{1}{x}=\frac{1}{2 x \sqrt{\ln x}}
$$

example: $\quad \frac{d}{d x} \ln \frac{x+1}{\sqrt{x-2}}=$?

$$
\begin{aligned}
\frac{d}{d x} \ln \frac{x+1}{\sqrt{x-2}} & =\frac{1}{\frac{x+1}{\sqrt{x-2}}} \frac{d}{d x} \frac{x+1}{\sqrt{x-2}}=\frac{\sqrt{x-2}}{x+1} \frac{\sqrt{x-2} \cdot 1-(x+1)\left(\frac{1}{2}\right)(x-2)^{-1 / 2}}{x-2} \\
& =\frac{x-2-\frac{1}{2}(x+1)}{(x+1)(x-2)}=\frac{x-5}{2(x+1)(x-2)}
\end{aligned}
$$

If we first simplify the given function using the laws of logarithms, the differentiation becomes easier

$$
\frac{d}{d x} \ln \frac{x+1}{\sqrt{x-2}}=\frac{d}{d x}\left[\ln (x+1)-\frac{1}{2} \ln (x-2)\right]=\frac{1}{x+1}-\frac{1}{2}\left(\frac{1}{x-2}\right)
$$

example:

Find $f^{\prime}(x)$ if $f(x)=\ln |x|$.

$$
\begin{aligned}
& f(x)= \begin{cases}\ln x & \text { if } x>0 \\
\ln (-x) & \text { if } x<0\end{cases} \\
& f^{\prime}(x)= \begin{cases}\frac{1}{x} & \text { if } x>0 \\
\frac{1}{-x}(-1)=\frac{1}{x} & \text { if } x<0\end{cases}
\end{aligned}
$$

Thus, $f^{\prime}(x)=1 / x$ for all $x \neq 0$.

The result is worth remembering:

$$
\frac{d}{d x} \ln |x|=\frac{1}{x}
$$

a logarithmic function with base a in terms of the natural logarithmic function:

$$
\log _{a} x=\frac{\ln x}{\ln a}
$$

Since $\ln a$ is a constant, we can differentiate as follows:

$$
\frac{d}{d x}\left(\log _{a} x\right)=\frac{d}{d x} \frac{\ln x}{\ln a}=\frac{1}{\ln a} \frac{d}{d x}(\ln x)=\frac{1}{x \ln a}
$$

$$
\frac{d}{d x}\left(\log _{a} x\right)=\frac{1}{x \ln a}
$$

example:

$$
\begin{aligned}
& \frac{d}{d x} \log _{10}(2+\sin x) \\
& \quad=\frac{1}{(2+\sin x) \ln 10} \frac{d}{d x}(2+\sin x)=\frac{\cos x}{(2+\sin x) \ln 10}
\end{aligned}
$$

IMPORTANT and UNUSUAL: If you have a daunting task to find derivative in the case of a function raised to the function ($x^{x}, x^{\sin x} \ldots$), or a crazy product, quotient, chain problem you do a simple trick:
FIRST find logarithm ,ln, so you'll have sum instead of product, and product instead of exponent. Life will be much, much easier.

STEPS IN LOGARITHMIC DIFFERENTIATION

1. Take natural logarithms of both sides of an equation $y=f(x)$ and use the Laws of Logarithms to simplify.
2. Differentiate implicitly with respect to x.
3. Solve the resulting equation for y.
example:
Differentiate: $y=\frac{x^{3 / 4} \sqrt{x^{2}+1}}{(3 x+2)^{5}}$

$$
\begin{aligned}
& \ln y=\frac{3}{4} \ln x+\frac{1}{2} \ln \left(x^{2}+1\right)-5 \ln (3 x+2) \\
& \frac{1}{y} \frac{d y}{d x}=\frac{3}{4} \cdot \frac{1}{x}+\frac{1}{2} \cdot \frac{2 x}{x^{2}+1}-5 \cdot \frac{3}{3 x+2} \\
& \frac{d y}{d x}=y\left(\frac{3}{4 x}+\frac{x}{x^{2}+1}-\frac{15}{3 x+2}\right)
\end{aligned}
$$

Since we have an explicit expression for y, we can substitute and write

$$
\frac{d y}{d x}=\frac{x^{3 / 4} \sqrt{x^{2}+1}}{(3 x+2)^{5}}\left(\frac{3}{4 x}+\frac{x}{x^{2}+1}-\frac{15}{3 x+2}\right)
$$

If we hadn't used logarithmic differentiation the resulting calculation would have been horrendous.
example:

$$
\begin{aligned}
& y=x^{\sin x} \quad y^{\prime}=? \\
& \ln y=(\sin x) \ln x \Rightarrow \frac{1}{y} y^{\prime}=(\cos x) \ln x+\frac{\sin x}{x} \\
& y^{\prime}=(\ln x) x^{\sin x} \cos x+(\sin x) x^{\sin x-1}
\end{aligned}
$$

Try: $y=(\sin x)^{x}$

