Transcendental Functions

Objectives

- Know what Trigonometric Functions and its derivatives are.
- Know what Inverse Trigonometric Functions and its derivatives are.
- Know what Natural Logarithm Functions and its derivatives are.
- Know what Exponential Functions and its derivatives are.
- Know what Functions a^u and log^u_a and its derivatives are.

A) Trigonometric Functions

Circles of Radius r

• <u>Theorem</u>.

For an angle θ in standard position, let P = (x, y) be the point on the terminal side of θ that is also on the circle $x^2 + y^2 = r^2$. Then

$$\sin heta = rac{y}{r} \quad \csc heta = rac{r}{y}, y
eq 0 \quad an heta = rac{y}{x}, x
eq 0$$
 $\cos heta = rac{x}{r} \quad \sec heta = rac{r}{x}, x
eq 0 \quad \cot heta = rac{x}{y}, y
eq 0$

Exact Values for Quadrantal Angles

Quadrantal Angles							
θ (Radians)	heta (Degrees)	$\sin \theta$	$\cos heta$	tan $ heta$	$\csc \theta$	$\sec\theta$	$\cot heta$
0	0°	0	1	0	Not defined	1	Not defined
$\frac{\pi}{2}$	90°	1	0	Not defined	1	Not defined	0
π	180°	0	-1	0	Not defined	-1	Not defined
$\frac{3\pi}{2}$	270°	-1	0	Not defined	-1	Not defined	0

Exact Values for Standard Angles

θ (Radians)	θ (Degrees)	$\sin \theta$	$\cos \theta$	tan θ	$\csc \theta$	$\sec\theta$	$\cot heta$
$\frac{\pi}{6}$	30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2\sqrt{3}}{3}$	$\sqrt{3}$
$\frac{\pi}{4}$	45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	$\sqrt{2}$	$\sqrt{2}$	1
$\frac{\pi}{3}$	60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{2\sqrt{3}}{3}$	2	$\frac{\sqrt{3}}{3}$

Properties of the Trigonometric Functions

Domains of Trigonometric Functions

- Domain of sine and cosine functions is the set of all real numbers
- Domain of tangent and secant functions is the set of all real numbers, except odd integer multiples of $\frac{\pi}{2} = 90^{\circ}$
- Domain of cotangent and cosecant functions is the set of all real numbers, except integer multiples of $\pi = 180^{\circ}$

Ranges of Trigonometric Functions

- Sine and cosine have range [-1, 1]
 - $-1 \leq \sin \theta \leq 1; |\sin \theta| \leq 1$
 - $-1 \le \cos \theta \le 1$; $|\cos \theta| \le 1$
- Range of cosecant and secant is $(-\infty, -1] \cup [1, \infty)$
 - $|\csc \theta| \ge 1$
 - $|\sec \theta| \ge 1$
- Range of tangent and cotangent functions is the set of all real numbers

Periods of Trigonometric Functions

- Sine, cosine, cosecant and secant have period 2π
- \bullet Tangent and cotangent have period π

Signs of the Trigonometric Functions

• P = (x, y) corresponding to angle θ • Definitions of functions, where defined $\sin \theta = y$ $\cos \theta = x$ $\tan \theta = \frac{y}{x}$

$$\csc heta = rac{1}{y}$$
 $\sec heta = rac{1}{x}$ $\cot heta = rac{x}{y}$

- Find the signs of the functions
 - Quadrant I: x > 0, y > 0
 - Quadrant II: x < 0, y > 0
 - Quadrant III: x < 0, y < 0
 - Quadrant IV: x > 0, y < 0

Signs of the Trigonometric Functions

Quadrant of θ	$\sin heta$, $\csc heta$	$\cos \theta$, sec θ	tan θ , cot θ	
I	Positive	Positive	Positive	
Ш	Positive	Negative	Negative	
Ш	Negative	Negative	Positive	
IV	Negative	Positive	Negative	
$\sin \theta >$	(-, +) $(-, +)$ $(-, +)$ $(+, +)$ $(+, +)$ $(+, +)$ $(+, +)$ $(+, +)$ $(+, +)$		sine v cosecant	

Pythagorean Identities

- Unit circle: $x^2 + y^2 = 1$
- $(\sin \theta)^2 + (\cos \theta)^2 = 1$

$$\sin^2 heta + \cos^2 heta = 1$$

 $\tan^2 heta + 1 = \sec^2 heta$
 $1 + \cot^2 heta = \csc^2 heta$

Even-Odd Properties

- A function f is even if $f(-\theta) = f(\theta)$ for all θ in the domain of f
- A function f is odd if $f(-\theta) = -f(\theta)$ for all θ in the domain of f

Even-Odd Properties

- Theorem. [Even-Odd Properties] $sin(-\theta) = -sin(\theta)$ $cos(-\theta) = cos(\theta)$ $tan(-\theta) = -tan(\theta)$ $csc(-\theta) = -csc(\theta)$ $sec(-\theta) = sec(\theta)$ $cot(-\theta) = -cot(\theta)$
- Cosine and secant are even functions
- The other functions are odd functions

Fundamental Trigonometric Identities

• Quotient Identities $\tan \theta = \frac{\sin \theta}{\cos \theta} \qquad \cot \theta = \frac{\cos \theta}{\sin \theta}$ • Reciprocal Identities $\csc \theta = \frac{1}{\sin \theta} \quad \sec \theta = \frac{1}{\cos \theta} \quad \cot \theta = \frac{1}{\tan \theta}$ • Pythagorean Identities $\sin^2\theta + \cos^2\theta = 1 \quad \tan^2\theta + 1 = \sec^2\theta \quad 1 + \cot^2\theta = \csc^2\theta$ • Even-Odd Identities $\sin(-\theta) = -\sin\theta$ $\cos(-\theta) = \cos\theta$ $\tan(-\theta) = -\tan\theta$ $\csc(-\theta) = -\csc\theta$ $\sec(-\theta) = \sec\theta$ $\cot(-\theta) = -\cot\theta$

Graphs of the Sine and Cosine Functions

Graphing Trigonometric Functions

- Graph in *xy*-plane
- Write functions as
 - $y = f(x) = \sin x$
 - $y = f(x) = \cos x$
 - $y = f(x) = \tan x$
 - $y = f(x) = \csc x$
 - $y = f(x) = \sec x$
 - $y = f(x) = \cot x$
- Variable x is an angle, measured in radians
 - Can be any real number

Graphing the Sine Function

• Periodicity: Only need to graph on interval $[0, 2\pi]$ (One cycle)

• Plot points and graph

Properties of the Sine Function

- Domain: All real numbers
- Range: [-1, 1]
- Odd function
- Periodic, period 2π
- *x*-intercepts: ..., -2π , $-\pi$, 0, π , 2π , 3π , ...
- *y*-intercept: 0
- Maximum value: y = 1, occurring at $x = \dots, -\frac{3\pi}{2}, \frac{\pi}{2}, \frac{5\pi}{2}, \frac{9\pi}{2}, \dots$
- Minimum value: y = -1, occurring at $x = \dots, -\frac{\pi}{2}, \frac{3\pi}{2}, \frac{7\pi}{2}, \frac{11\pi}{2}, \dots$

Transformations of the Graph of the Sine Functions

• Example.

Problem: Use the graph of $y = \sin x$ to graph $y = -4 \sin\left(x + \frac{\pi}{4}\right)$ **Answer**: 2 3 Ш -2

Graphing the Cosine Function

• Periodicity: Again, only need to graph on interval $[0, 2\pi]$ (One cycle)

• Plot points and graph

Properties of the Cosine Function

- Domain: All real numbers
- Range: [-1, 1]
- Even function
- Periodic, period 2π
- *x*-intercepts: ..., $-\frac{3\pi}{2}, -\frac{\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \dots$
- y-intercept: 1
- Maximum value: y = 1, occurring at

$$x=\,...,\,-2\pi,\,0,\,2\pi,\,4\pi,\,6\pi,\,...$$

• Minimum value: y = -1, occurring at

$$x = ..., -\pi, \pi, 3\pi, 5\pi, ...$$

Amplitude and Period of Sinusoidal Functions

• Cycle: One period of $y = \sin(\omega x)$ or $y = \cos(\omega x)$

Amplitude and Period of Sinusoidal Functions

• Theorem. If $\omega > 0$, the amplitude and period of $y = A \sin(\omega x)$ and $y = A \cos(\omega x)$ are given by Amplitude = |A| 2π

$$ext{Period} = T = rac{2\pi}{\omega}.$$

Amplitude and Period of Sinusoidal Functions

• Example.

Problem: Determine the amplitude and period of $y = -2\cos(\pi x)$

Answer:

Graphing Sinusoidal Functions

- One cycle contains four important subintervals
- For $y = \sin x$ and $y = \cos x$ these are $\left[0, \frac{\pi}{2}\right], \left[\frac{\pi}{2}, \pi\right], \left[\pi, \frac{3\pi}{2}\right], \left[\frac{3\pi}{2}, 2\pi\right]$
- Gives five key points on graph

Graphs of the Tangent, Cotangent, Cosecant and Secant Functions

Graphing the Tangent Function

• Periodicity: Only need to graph on interval $[0, \pi]$

Properties of the Tangent Function

- Domain: All real numbers, except odd multiples of $\frac{\pi}{2}$
- Range: All real numbers
- Odd function
- Periodic, period π
- *x*-intercepts: ..., -2π , $-\pi$, 0, π , 2π , 3π , ...
- y-intercept: 0
- Asymptotes occur at $x = \dots, -\frac{3\pi}{2}, -\frac{\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}, \dots$

Transformations of the Graph of the Tangent Functions

• Example.

Problem: Use the graph of $y = \tan x$ to graph $y = -2 \tan \left(\frac{x}{3}\right)$

Graphing the Cotangent Function

• Periodicity: Only need to graph on interval $[0, \pi]$

Graphing the Cosecant and Secant Functions

- Use reciprocal identities
- Graph of $y = \csc x$

Graphing the Cosecant and Secant Functions

- Use reciprocal identities
- Graph of $y = \sec x$

Transformations of the Graph of the Trigonometric Functions If A, C, B & ω Are real numbers, $\omega > 0$, $y = A \sin(\omega x + C) + B$, ...Than,

- The range of function is $\mp A$.
- If A < 1 than, the function will reflect.
- The period $T = \frac{2\pi}{\omega}$ for (sin, cos, sec & csc).
- The period $T = \frac{\pi}{\omega}$ for (tan & cot).
- If $\omega > 1$ than, the period will shrink horizontally.
- If $0 < \omega < 1$ than, the period will stretch horizontally.

- The start of period $x_{start} = \frac{-C}{\omega}$.
- If C > 0, the period will move rightward.
- If C > 0, the period will move leftward.
- The end of period $x_{end} = x_{start} + T$.
- If B > 0, the function will move upward.
- If B < 0, the function will move downward.

Examples:

Derivatives of Trigonometric Functions

When we talk about the function *f* defined for all real numbers *x* by $f(x) = \sin x$, it is understood that $\sin x$ means the sine of the angle whose radian measure is *x*. A similar convention holds for the other trigonometric functions cos, tan, csc, sec, and cot

$$f'(x) = \sin x$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$$

$$= \lim_{h \to 0} \frac{\sin x \cos h + \cos x \sin h - \sin x}{h}$$

$$= \lim_{h \to 0} \left[\frac{\sin x \cos h - \sin x}{h} + \frac{\cos x \sin h}{h} \right]$$

$$= \lim_{h \to 0} \left[\sin x \left(\frac{\cos h - 1}{h} \right) + \cos x \left(\frac{\sin h}{h} \right) \right]$$

$$= \lim_{h \to 0} \sin x \cdot \lim_{h \to 0} \frac{\cos h - 1}{h} + \lim_{h \to 0} \cos x \cdot \lim_{h \to 0} \frac{\sin h}{h}$$

$$= \sin x \lim_{h \to 0} \frac{\cos h - 1}{h} + \cos x \lim_{h \to 0} \frac{\sin h}{h}$$

$$\lim_{h \to 0} \frac{\sin h}{h} = ?$$
For first quadrant all,
 $\sin \theta$, θ , and $\tan \theta$
are positive so we can write
 $\sin \theta < \theta < \tan \theta$
 $\theta < \theta < \tan \theta$
 $1 < \frac{\theta}{\sin \theta} < \frac{1}{\cos \theta}$
Take the inverse $1 > \frac{\sin \theta}{\theta} > \cos \theta$
 $\lim_{\theta \to 0^+} 1 = 1$ & $\lim_{\theta \to 0^+} \cos \theta = 1$
By the Squeeze Theorem, we have: $\lim_{\theta \to 0^+} \frac{\sin \theta}{\theta} = 1$

However, the function $(\sin \theta)/\theta$ is an even function. So, its right and left limits must be equal. Hence, we have:

$$\lim_{h \to 0} \frac{\sin h}{h} = 1$$

$$\begin{split} \lim_{h \to 0} \frac{\cos h - 1}{h} &= ?\\ \lim_{\theta \to 0} \frac{\cos \theta - 1}{\theta} \\ &= \lim_{\theta \to 0} \left(\frac{\cos \theta - 1}{\theta} \cdot \frac{\cos \theta + 1}{\cos \theta + 1} \right) \\ &= \lim_{\theta \to 0} \frac{\cos^2 \theta - 1}{\theta(\cos \theta + 1)} = \lim_{\theta \to 0} \frac{-\sin^2 \theta}{\theta(\cos \theta + 1)} \\ &= -\lim_{\theta \to 0} \left(\frac{\sin \theta}{\theta} \cdot \frac{\sin \theta}{\cos \theta + 1} \right) \\ &= -\lim_{\theta \to 0} \frac{\sin \theta}{\theta} \cdot \lim_{\theta \to 0} \frac{\sin \theta}{\cos \theta + 1} = -1 \cdot \left(\frac{\theta}{1 + 1} \right) = \\ &\lim_{h \to 0} \frac{\cos h - 1}{h} = 0 \end{split}$$

$$f'(x) = \sin x \cdot \lim_{h \to 0} \frac{\cos h - 1}{h} + \cos x \cdot \lim_{h \to 0} \frac{\sin h}{h}$$
$$= (\sin x) \cdot 0 + (\cos x) \cdot 1$$
$$= \cos x$$
$$\frac{d}{dx} (\sin x) = \cos x$$

Using the same methods as in the case of finding derivative of $\sin x$, we can prove:

$$\frac{d}{dx}(\cos x) = -\sin x$$

The tangent function can also be differentiated by using the definition of a derivative.

However, it is easier to use the Quotient Rule together with formulas for derivatives of $\sin x \ \& \cos x$ as follows.

$$\frac{d}{dx}(\tan x) = \frac{d}{dx} \left(\frac{\sin x}{\cos x}\right)$$
$$= \frac{\cos x \frac{d}{dx}(\sin x) - \sin x \frac{d}{dx}(\cos x)}{\cos^2 x}$$
$$= \frac{\cos x \cdot \cos x - \sin x(-\sin x)}{\cos^2 x}$$
$$= \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} = \sec^2 x$$

The derivatives of the remaining trigonometric functions — csc, sec, and cot — can also be found easily using the Quotient Rule.

All together:

 $\frac{d}{dx}(\sin x) = \cos x$ $\frac{d}{dx}(\csc x) = -\csc x \cot x$ $\frac{d}{dx}(\cos x) = -\sin x$ $\frac{d}{dx}(\sec x) = \sec x \tan x$ $\frac{d}{dx}(\tan x) = \sec^2 x$ $\frac{d}{dx}(\cot x) = -\csc^2 x$

Example:

Differentiate $f(x) = \frac{\sec x}{1 + \tan x}$

For what values of *x* does the graph of *f* have a horizontal tangent?

$$f'(x) = \frac{(1+\tan x)\frac{d}{dx}(\sec x) - \sec x\frac{d}{dx}(1+\tan x)}{(1+\tan x)^2}$$
$$= \frac{(1+\tan x)\sec x\tan x - \sec x \cdot \sec^2 x}{(1+\tan x)^2}$$
$$= \frac{\sec x(\tan x + \tan^2 x - \sec^2 x)}{(1+\tan x)^2}$$
$$= \frac{\sec x(\tan x - 1)}{(1+\tan x)^2}$$
$$\tan^2 x - \sec^2 x = \frac{\sin^2 x}{\cos^2 x} - \frac{1}{\cos^2 x}$$

x

 $\cos^2 x$

B) Inverse Trigonometric functions

Arcsine Arccosine

Lets review inverse functions

Find the inverse of f(x) = 3x + 6 y = 3x + 6Inverse functions switch domain and range. x = 3y + 6 (solve for y) So, x - 6 = 3y $\frac{1}{3}x - 2 = y$ $f^{-1}(x) = \frac{1}{3}x - 2$ What is the domain and range of the Sine function

Domain: All real numbers Range: - 1 to 1

What is the domain and range of the Inverse of the Sine function

The inverse's Domain would be -1 to 1; Yet the Range is not all real numbers. Range

Inverse of the Cosine

Domain: [-1,1]Range: $[\pi,0]$

The Tangent function

Domain: All real numbers except Where n is a integer Range: All real numbers

Inverse of Tangent function

Domain: All real numbers Range:

Definition of Arcsine

The arc sine is the inverse function of the sine. What is the angle that has a sine equal to a given number $\frac{\sqrt{2}}{2}$

Since,

 $\sin\frac{\pi}{4} = \frac{\sqrt{2}}{2}$

Find the exact value. For these problems All answers are in the First Quadrant.

 $\arccos \frac{\sqrt{3}}{2} = \frac{\pi}{6}$ $\arcsin\frac{1}{2} = \frac{\pi}{6}$ $\arctan 1 = \frac{\pi}{\Delta}$

Be careful to make sure it is in the Range

 $\arcsin\left(\sin\frac{\pi}{3}\right) = \frac{\pi}{3}$

 $\arccos\left(\cos\frac{7\pi}{6}\right) = \frac{5\pi}{6}$

Solve using a triangle

1

Cot u =

 $\frac{1}{x}$

 $\csc\left(\arctan\frac{x}{\sqrt{2}}\right)$

Let

Solve

Derivatives of Inverse Trigonometric Functions

The next theorem lists the derivatives of the six inverse trigonometric functions. Note that the derivatives of arccos u, arccot u, and arccsc u are the *negatives* of the derivatives of arcsin u, arctan u, and arcsec u, respectively.

THEOREM 5.16 Derivatives of Inverse Trigonometric Functions Let *u* be a differentiable function of *x*.

$$\frac{d}{dx}[\arcsin u] = \frac{u'}{\sqrt{1 - u^2}} \qquad \qquad \frac{d}{dx}[\arccos u] = \frac{-u'}{\sqrt{1 - u^2}}$$
$$\frac{d}{dx}[\arctan u] = \frac{u'}{1 + u^2} \qquad \qquad \frac{d}{dx}[\operatorname{arccot} u] = \frac{-u'}{1 + u^2}$$
$$\frac{d}{dx}[\operatorname{arcsec} u] = \frac{u'}{|u|\sqrt{u^2 - 1}} \qquad \qquad \frac{d}{dx}[\operatorname{arccsc} u] = \frac{-u'}{|u|\sqrt{u^2 - 1}}$$

Example:

Differentiating Inverse Trigonometric Functions

a.
$$\frac{d}{dx} [\arcsin(2x)] = \frac{2}{\sqrt{1 - (2x)^2}} = \frac{2}{\sqrt{1 - 4x^2}}$$

b. $\frac{d}{dx} [\arctan(3x)] = \frac{3}{1 + (3x)^2} = \frac{3}{1 + 9x^2}$
c. $\frac{d}{dx} [\arcsin\sqrt{x}] = \frac{(1/2)x^{-1/2}}{\sqrt{1 - x}} = \frac{1}{2\sqrt{x}\sqrt{1 - x}} = \frac{1}{2\sqrt{x} - x^2}$
d. $\frac{d}{dx} [\operatorname{arcsec} e^{2x}] = \frac{2e^{2x}}{e^{2x}\sqrt{(e^{2x})^2 - 1}} = \frac{2e^{2x}}{e^{2x}\sqrt{e^{4x} - 1}} = \frac{2}{\sqrt{e^{4x} - 1}}$

The absolute value sign is not necessary because $e^{2x} > 0$.

C) Exponential Functions

Exponential Function

• The function defined by

 $f(x) = b^x \qquad (b > 0, \ b \neq 1)$

is called an exponential function with base b and exponent x.

• The domain of *f* is the set of all real numbers.

 \bullet The exponential function with base 2 is the function

with domain $(-\infty, \infty)$.

• The values of f(x) for selected values of x follow:

 $f(x) = 2^x$

$$f(3) = 2^3 = 8$$

$$f\left(\frac{3}{2}\right) = 2^{3/2} = 2 \cdot 2^{1/2} = 2\sqrt{2}$$

 $f(0) = 2^0 = 1$

• The exponential function with base 2 is the function $f(x) = 2^x$

with domain $(-\infty, \infty)$.

• The values of f(x) for selected values of x follow:

$$f(-1) = 2^{-1} = \frac{1}{2}$$

$$f\left(-\frac{2}{3}\right) = 2^{-2/3} = \frac{1}{2^{2/3}} = \frac{1}{\sqrt[3]{4}}$$

Laws of Exponents

• Let *a* and *b* be positive numbers and let *x* and *y* be real numbers. Then,

$$1. \quad b^x \cdot b^y = b^{x+y}$$

2.
$$\frac{b^{x}}{b^{y}} = b^{x-y}$$
3.
$$(b^{x})^{y} = b^{xy}$$
4.
$$(ab)^{x} = a^{x}b^{x}$$
5.
$$\left(\frac{a}{b}\right)^{x} = \frac{a^{x}}{b^{x}}$$

• Let $f(x) = 2^{2x-1}$. Find the value of x for which f(x) = 16.

Solution

• We want to solve the equation

$$2^{2x-1} = 16 = 2^4$$

• But this equation holds if and only if

$$2x-1=4$$

giving
$$x = \frac{5}{2}$$

• Sketch the graph of the exponential function $f(x) = 2^x$.

Solution

- First, recall that the domain of this function is the set of real numbers.
- Next, putting x = 0 gives $y = 2^0 = 1$, which is the *y*-intercept.

(There is no x-intercept, since there is no value of x for which y = 0)

- Sketch the graph of the exponential function $f(x) = 2^x$. Solution
- Now, consider a few values for *x*:

X	-5	-4	-3	-2	-1	0	1	2	3	4	5	
у	1/32	-4 1/16	1/8	1/4	1/2	1	2	4	8	16	32	

- Note that 2^x approaches zero as x decreases without bound:
 - There is a horizontal asymptote at y = 0.
- Furthermore, 2^x increases without bound when x increases without bound.
- Thus, the range of f is the interval $(0, \infty)$.

• Sketch the graph of the exponential function $f(x) = 2^x$.

Solution

• Finally, sketch the graph:

• Sketch the graph of the exponential function $f(x) = (1/2)^x$.

Solution

- First, recall again that the domain of this function is the set of real numbers.
- Next, putting x = 0 gives $y = (1/2)^0 = 1$, which is the *y*-intercept.

(There is no x-intercept, since there is no value of x for which y = 0)

• Sketch the graph of the exponential function $f(x) = (1/2)^x$.

Solution

• Now, consider a few values for *x*:

X	- 5	-4	-3	-2	- 1	0	1	2	3	4	5
у	32	16	8	4	2	1	1/2	1/4	1/8	1/16	1/32

- Note that $(1/2)^x$ increases without bound when x decreases without bound.
- Furthermore, $(1/2)^x$ approaches zero as x increases without bound: there is a horizontal asymptote at y = 0.
- As before, the range of f is the interval $(0, \infty)$.

• Sketch the graph of the exponential function $f(x) = (1/2)^x$.

Solution

• Finally, sketch the graph:

• Sketch the graph of the exponential function $f(x) = (1/2)^x$.

Solution

• Note the symmetry between the two functions:

Properties of Exponential Functions

The exponential function $y = b^x (b > 0, b \neq 1)$ has the following properties:

- 1. Its domain is $(-\infty, \infty)$.
- 2. Its range is $(0, \infty)$.
- 3. Its graph passes through the point (0, 1)
- 4. It is continuous on $(-\infty, \infty)$.
- 5. It is increasing on $(-\infty, \infty)$ if b > 1 and decreasing on $(-\infty, \infty)$ if b < 1.

The Base e

- Exponential functions to the base *e*, where *e* is an irrational number whose value is 2.7182818..., play an important role in both theoretical and applied problems.
- It can be shown that

$$e = \lim_{m \to \infty} \left(1 + \frac{1}{m} \right)^m$$

• Sketch the graph of the exponential function $f(x) = e^x$.

Solution

- Since $e^x > 0$ it follows that the graph of $y = e^x$ is similar to the graph of $y = 2^x$.
- Consider a few values for *x*:

X	-3	-2	- 1	0	1	2	3
у	0.05	0.14	0.37	1	2.72	7.39	20.09

• Sketch the graph of the exponential function $f(x) = e^x$.

Solution

• Sketching the graph:

• Sketch the graph of the exponential function $f(x) = e^{-x}$.

Solution

- Since e^{-x} > 0 it follows that 0 < 1/e < 1 and so
 f(x) = e^{-x} = 1/e^x = (1/e)^x is an exponential function with base less than 1.
- Therefore, it has a graph similar to that of $y = (1/2)^x$.
- Consider a few values for *x*:

X	-3	-2	- 1	0	1	2	3
у	20.09	7.39	2.72	1	0.37	0.14	0.05

• Sketch the graph of the exponential function $f(x) = e^{-x}$.

Solution

• Sketching the graph:

D) Logarithmic Functions

Logarithms

• We've discussed exponential equations of the form

 $y = b^x \qquad (b > 0, \ b \neq 1)$

- But what about solving the same equation for y?
- You may recall that y is called the logarithm of x to the base b, and is denoted log_bx.
 - \bullet Logarithm of x to the base b

 $y = \log_b x$ if and only if $x = b^y$ (x > 0)

Examples

• Solve $\log_3 x = 4$ for x:

Solution

- By definition, $\log_3 x = 4$ implies $x = 3^4 = 81$.
- Solve $\log_{16} 4 = x$ for x:

Solution

• $\log_{16}4 = x$ is equivalent to $4 = 16^x = (4^2)^x = 4^{2x}$, or $4^1 = 4^{2x}$,

from which we deduce that

- Solve $\log_{16} 4 = x$ for x: Solution
- $\log_{16}4 = x$ is equivalent to $4 = 16^x = (4^2)^x = 4^{2x}$, or $4^1 = 4^{2x}$,

from which we deduce that

2x = 1 $x = \frac{1}{2}$

• Solve $\log_x 8 = 3$ for x: Solution

• By definition, we see that $\log_x 8 = 3$ is equivalent to

$$8 = 2^3 = x^3$$
$$x = 2$$

Logarithmic Notation

 $\log x = \log_{10} x$ $\ln x = \log_e x$

Common logarithm Natural logarithm

Laws of Logarithms

1.

• If m and n are positive numbers, then

2. $log_{b} mn = log_{b} m + log_{b} n$ $log_{b} \frac{m}{n} = log_{b} m - log_{b} n$ 3. $log_{b} m^{n} = n \log_{b} m$ 4. $log_{b} 1 = 0$ 5. $log_{b} b = 1$

Given that log 2 ≈ 0.3010, log 3 ≈ 0.4771, and log 5 ≈ 0.6990, use the laws of logarithms to find

 $log 15 = log 3 \cdot 5$ = log 3 + log 5 $\approx 0.4771 + 0.6990$ = 1.1761

Given that log 2 ≈ 0.3010, log 3 ≈ 0.4771, and log 5 ≈ 0.6990, use the laws of logarithms to find

log 7.5 = log(15/2)= log(3 \cdot 5/2) = log 3 + log 5 - log 2 \approx 0.4771 + 0.6990 - 0.3010 = 0.8751

Given that $\log 2 \approx 0.3010$, $\log 3 \approx 0.4771$, and $\log 5 \approx 0.6990$, use the laws of logarithms to find

 $log 81 = log 3^4$ = 4 log 3 $\approx 4(0.4771)$ = 1.9084

• Given that $\log 2 \approx 0.3010$, $\log 3 \approx 0.4771$, and $\log 5 \approx 0.6990$, use the laws of logarithms to find

 $log 50 = log 5 \cdot 10$ = log 5 + log 10 $\approx 0.6990 + 1$ = 1.6990

• Expand and simplify the expression:

$$\log_3 x^2 y^3 = \log_3 x^2 + \log_3 y^3$$

= $2\log_3 x + 3\log_3 y$

• Expand and simplify the expression:

$$\log_2 \frac{x^2 + 1}{2^x} = \log_2 (x^2 + 1) - \log_2 2^x$$
$$= \log_2 (x^2 + 1) - x \log_2 2$$
$$= \log_2 (x^2 + 1) - x$$

1

• Expand and simplify the expression:

$$n\frac{x^2\sqrt{x^2-1}}{e^x} = \ln\frac{x^2(x^2-1)^{1/2}}{e^x}$$
$$= \ln x^2 + \ln(x^2-1)^{1/2} - \ln e^x$$
$$= 2\ln x + \frac{1}{2}\ln(x^2-1) - x\ln e$$
$$= 2\ln x + \frac{1}{2}\ln(x^2-1) - x$$

 $\log_3(x+1) - \log_3(x-1) = 1$

Use the properties of logarithms to solve the equation for x:

 $\log_3 \frac{x+1}{x-1} = 1$ Law 2

$$\frac{x+1}{x-1} = 3^1 = 3$$

Definition of logarithms

$$x+1=3(x-1)$$

$$x+1=3x-3$$

$$4 = 2x$$

Use the properties of logarithms to solve the equation for *x*: $\log x + \log(2x - 1) = \log 6$

 $\frac{x(2x-1)}{6} = 10^{\circ} = 1$

 $\log x + \log(2x-1) - \log 6 = 0$

 $\log \frac{x(2x-1)}{6} = 0$ Laws 1 and 2

Definition of logarithms

x(2x-1) = 6 $2x^{2} - x - 6 = 0$ (2x+3)(x-2) = 0 x = 2 $x = -\frac{3}{2} \text{ is out of}$ the domain of log x, so it is discarded.

Logarithmic Function

• The function defined by

$$f(x) = \log_b x \qquad (b > 0, \ b \neq 1)$$

is called the logarithmic function with base b.

• The domain of f is the set of all positive numbers.

Properties of Logarithmic Functions

The logarithmic function

 $y = \log_b x \qquad (b > 0, \ b \neq 1)$

has the following properties:

- 1. Its domain is $(0, \infty)$.
- 2. Its range is $(-\infty, \infty)$.
- 3. Its graph passes through the point (1, 0).
- 4. It is continuous on $(0, \infty)$.
- 5. It is increasing on $(0, \infty)$ if b > 1and decreasing on $(0, \infty)$ if $b \neq 1$.

• Sketch the graph of the function $y = \ln x$. Solution

• We first sketch the graph of $y = e^x$.

The required graph is the mirror image of the graph of $y = e^x$ with respect to the line y = x:

Properties Relating Exponential and Logarithmic Functions

• Properties relating e^x and $\ln x$:

 $e^{\ln x} = x \qquad (x > 0)$

 $\ln e^x = x$ (for any real number x)

• Solve the equation $2e^{x+2} = 5$. Solution

 \bullet Divide both sides of the equation by 2 to obtain:

$$e^{x+2} = \frac{5}{2} = 2.5$$

• Take the natural logarithm of each side of the equation and solve:

 $\ln e^{x+2} = \ln 2.5$ $(x+2)\ln e = \ln 2.5$ $x+2 = \ln 2.5$ $x = -2 + \ln 2.5$ $x \approx -1.08$

• Solve the equation $5 \ln x + 3 = 0$. Solution

Add −3 to both sides of the equation and then divide both sides of the equation by 5 to obtain:

$$5\ln x = -3$$

 $\ln x = -\frac{3}{5} = -0.6$

and so:

$$e^{\ln x} = e^{-0.6}$$
$$x = e^{-0.6}$$
$$x \approx 0.55$$

Derivative of Exponential and Logarithmic Functions

1- Derivative of exponential function $f(x) = e^x$

example:

Differentiate the function $y = e^{\tan x}$

To use the Chain Rule, we let $u = \tan x$.

Then, we have $y = e^{u}$.

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} = e^{u}\frac{du}{dx} = e^{\tan x}\sec^{2} x$$

example:

Find y' if $y = e^{-4x} \sin 5x$.

 $y' = e^{-4x} (\cos 5x)(5) + (\sin 5x)e^{-4x} (-4)$ = $e^{-4x} (5\cos 5x - 4\sin 5x)$ chain rule:

$$\frac{d}{dx}e^u = e^u \frac{du}{dx}$$

We can now use this formula to find the derivative of a^x

$$y = a^x \implies \ln y = \ln a^x = x \ln a \implies a^x = e^{x \ln a}$$

$$\frac{d}{dx}a^{x} = \frac{d}{dx}(e^{x\ln a}) = e^{x\ln a} \frac{d}{dx}(x\ln a) = e^{x\ln a} \cdot \ln a$$

 $\frac{d}{dx}a^x = a^x \cdot \ln a$

2- Derivative of Natural Logarithm Function

$$y = \ln x$$

$$e^{y} = x \implies \frac{d}{dx}e^{y} = \frac{d}{dx}x \implies \Rightarrow$$

$$e^{y} \frac{dy}{dx} = 1 \implies x \frac{dy}{dx} = 1 \implies \Rightarrow \frac{dy}{dx} = \frac{1}{x}$$

$$\frac{d}{dx}(\ln x) = \frac{1}{x}$$

example:

Differentiate $y = \ln(x^3 + 1)$.

To use the Chain Rule, we let $u = x^3 + 1$. Then, $y = \ln u$.

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} = \frac{1}{u}\frac{du}{dx} = \frac{1}{x^3+1}(3x^2) = \frac{3x^2}{x^3+1}$$

example:

Find:
$$\frac{d}{dx}\ln(\sin x)$$

$$\frac{d}{dx}\ln(\sin x) = \frac{1}{\sin x}\frac{d}{dx}(\sin x) = \frac{1}{\sin x}\cos x = \cot x$$

example: Differentiate
$$f(x) = \sqrt{\ln x}$$

 $f'(x) = \frac{1}{2} (\ln x)^{-1/2} \frac{d}{dx} (\ln x) = \frac{1}{2\sqrt{\ln x}} \cdot \frac{1}{x} = \frac{1}{2x\sqrt{\ln x}}$
example: $\frac{d}{dx} \ln \frac{x+1}{\sqrt{x-2}} = ?$
 $\frac{d}{dx} \ln \frac{x+1}{\sqrt{x-2}} = \frac{1}{\frac{x+1}{\sqrt{x-2}}} \frac{d}{dx} \frac{x+1}{\sqrt{x-2}} = \frac{\sqrt{x-2}}{x+1} \frac{\sqrt{x-2} \cdot 1 - (x+1)(\frac{1}{2})(x-2)^{-1/2}}{x-2}$
 $= \frac{x-2-\frac{1}{2}(x+1)}{(x+1)(x-2)} = \frac{x-5}{2(x+1)(x-2)}$

If we first simplify the given function using the laws of logarithms, the differentiation becomes easier

$$\frac{d}{dx}\ln\frac{x+1}{\sqrt{x-2}} = \frac{d}{dx}\left[\ln(x+1) - \frac{1}{2}\ln(x-2)\right] = \frac{1}{x+1} - \frac{1}{2}\left(\frac{1}{x-2}\right)$$

example:

Find
$$f'(x)$$
 if $f(x) = \ln |x|$.

$$f(x) = \begin{cases} \ln x & \text{if } x > 0\\ \ln(-x) & \text{if } x < 0 \end{cases}$$

$$f'(x) = \begin{cases} \frac{1}{x} & \text{if } x < 0\\ \frac{1}{-x}(-1) = \frac{1}{x} & \text{if } x < 0 \end{cases}$$

Thus, f'(x) = 1/x for all $x \neq 0$.

The result is worth remembering:

$$\frac{d}{dx}\ln|x| = \frac{1}{x}$$

3- Derivative of Logarithm Function

a logarithmic function with base *a* in terms of the natural logarithmic function:

$$\log_a x = \frac{\ln x}{\ln a}$$

Since In *a* is a constant, we can differentiate as follows:

$$\frac{d}{dx}(\log_a x) = \frac{d}{dx}\frac{\ln x}{\ln a} = \frac{1}{\ln a}\frac{d}{dx}(\ln x) = \frac{1}{x\ln a}$$

$$\frac{d}{dx}(\log_a x) = \frac{1}{x\ln a}$$

example:

$$\frac{d}{dx}\log_{10}(2+\sin x) = \frac{1}{(2+\sin x)\ln 10}\frac{d}{dx}(2+\sin x) = \frac{\cos x}{(2+\sin x)\ln 10}$$

IMPORTANT and UNUSUAL: If you have a daunting task to find derivative in the case of a function raised to the function $(x^x, x^{\sin x} \dots)$, or a crazy product, quotient, chain problem you do a simple trick:

FIRST find logarithm , *ln*, so you'll have sum instead of product, and product instead of exponent. Life will be much, much easier.

STEPS IN LOGARITHMIC DIFFERENTIATION

- 1. Take natural logarithms of both sides of an equation y = f(x) and use the Laws of Logarithms to simplify.
- 2. Differentiate implicitly with respect to *x*.
- 3. Solve the resulting equation for y'.

Γ

example:
Differentiate:
$$y = \frac{x^{3/4}\sqrt{x^2+1}}{(3x+2)^5}$$

$$\ln y = \frac{3}{4} \ln x + \frac{1}{2} \ln \left(x^2 + 1 \right) - 5 \ln \left(3x + 2 \right)$$

$$\frac{1}{y}\frac{dy}{dx} = \frac{3}{4}\cdot\frac{1}{x} + \frac{1}{2}\cdot\frac{2x}{x^2+1} - 5\cdot\frac{3}{3x+2}$$

$$\frac{dy}{dx} = y \left(\frac{3}{4x} + \frac{x}{x^2 + 1} - \frac{15}{3x + 2} \right)$$

Since we have an explicit expression for y, we can substitute and write

$$\frac{dy}{dx} = \frac{x^{3/4}\sqrt{x^2+1}}{(3x+2)^5} \left(\frac{3}{4x} + \frac{x}{x^2+1} - \frac{15}{3x+2}\right)$$

If we hadn't used logarithmic differentiation the resulting calculation would have been horrendous.

example:

$$y = x^{\sin x} \quad y' = ?$$

$$\ln y = (\sin x) \ln x \quad \Rightarrow \quad \frac{1}{y} \quad y' = (\cos x) \ln x + \frac{\sin x}{x}$$

$$y' = (\ln x)x^{\sin x}\cos x + (\sin x) x^{\sin x - 1}$$

Try: $y = (\sin x)^x$